Abstract

AbstractThe cellular delivery of oligonucleotides has been a major obstacle in the development of therapeutic antisense agents. PNAs (Peptide Nucleic Acid) are unique in providing a modular peptidic backbone that is amenable to structural and charge modulation. While cationic PNAs have been shown to be taken up by cells more efficiently than neutral PNAs, the generality of uptake across different nucleobase sequences has never been tested. Herein, we quantified the relative uptake of PNAs across a library of 10 000 sequences for two different PNA backbones (cationic and neutral) and identified sequences with high uptake and low uptake. We used the high uptake sequence as a bait for target identification, leading to the discovery that a protein, caprin‐1, binds to PNA with backbone and sequence discrimination. We further showed that purified caprin‐1 added to cell cultures enhanced the cellular uptake of PNA as well as DNA and RNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.