Abstract

BackgroundLatent tuberculosis infection (LTBI) is affecting one-third of the world population, and activation of LTBI is a substantial source of new cases of tuberculosis. LTBI is caused by tubercle bacilli in a state of non-replicating persistence (NRP), and the goal of this study was to evaluate the activity in vitro of various antimicrobial agents against non-replicating M. tuberculosis.MethodsTo achieve a state of NRP we placed broth cultures of M. tuberculosis (three strains) in anaerobic conditions, and in this model tested all known anti-TB drugs and some other antimicrobial agents (a total of 32 drugs). The potential effect was evaluated by plating samples from broth cultures for determining the number of viable bacteria (CFU/ml) during a prolonged period of cultivation. Besides drug-free controls we used metronidazole for positive controls, the only drug known so far to be effective against tubercle bacilli in anaerobic setting.ResultsOn a background of non-replicating conditions in drug-free cultures and clear bactericidal effect of metronidazole none of the antimicrobial agents tested produced effect similar to that of metronidazole except capreomycin, which was as bactericidal at the same level as metronidazole.ConclusionThe unique ability of capreomycin to be bactericidal in vitro among the anti-TB drugs against non-replicating tubercle bacilli may justify the search for other drugs among peptide antibiotics with similar activity. This phenomenon requires further studies on the mechanism of action of capreomycin, and evaluation of its activity in appropriate animal models.

Highlights

  • Latent tuberculosis infection (LTBI) is affecting one-third of the world population, and activation of LTBI is a substantial source of new cases of tuberculosis

  • Model validation We evaluated the kinetics of Growth Index (GI) and CFU/ml in three preliminary experiments using vials without any drugs added and in the presence of metronidazole

  • We examined the antimicrobial activity of all anti-TB drugs and of other antimicrobial agents against M. tuberculosis in anaerobic conditions

Read more

Summary

Introduction

Latent tuberculosis infection (LTBI) is affecting one-third of the world population, and activation of LTBI is a substantial source of new cases of tuberculosis. Two billion people, or onethird of the world's population, have LTBI, and approximately 10% of them will develop active TB during their lifetime. 11 million people in this category are registered throughout the world, and at least 10% of them develop active TB every year. All these facts have placed the problem of diagnosis and effective treatment of LTBI in the frontier of current TB research agenda

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.