Abstract

Capreomycin is an important therapeutic agent having intriguing and diverse molecular features. Its polypeptidic structure rich in nitrogen donors makes the drug a promising chelating agent for a number of transition metal ions, especially for copper(II). The results of the model investigational studies suggest that capreomycin anchors Cu 2+ ion with an amino function of the α,β-diaminopropionic acid residue at pH around 5. At physiological pH copper(II) ion is coordinated by two deprotonated amide nitrogen atoms of the α,β-diaminopropionic acid, the serine residue as well as the amino function deriving from the β-lysine. Above that pH value we observe a rearrangement within the coordination sphere leading to movement of Cu 2+ to the center of the peptide ring with concurrent coordination of four nitrogen donors. Spin–lattice relaxation enhancements and potentiometric measurements clearly indicate that deprotonated amide nitrogen atom from the β-ureidodehydroalanine moiety is the fourth donor atom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.