Abstract

SMEFT Wilson coefficients are subject to various positivity bounds in order to be consistent with the fundamental principles of S-matrix. Previous bounds on dimension-8 SMEFT operators have been obtained using the positivity part of UV partial wave unitarity and form a (projective) convex cone. We derive a set of linear UV unitarity conditions that go beyond positivity and are easy to implement in an optimization scheme with dispersion relations in a multi-field EFT. Using Higgs scattering as an example, we demonstrate how to obtain closed bounds in the space of the three relevant dimension-8 coefficients, making use of the UV unitarity conditions as well as so-called null constraints that arise from full crossing symmetry. Specifically, we show that they are bounded by inequalities schematically going like C <O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O} $$\\end{document} ((4π)2). We compare the newly obtained upper bounds with the traditional perturbative unitarity bounds from within the EFT, and discuss some phenomenological implications of the two-sided positivity bounds in the context of experimental probes of Vector Boson Scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call