Abstract

Polyethyleneimine (PEI) nanofiltration (NF) membranes demonstrate remarkable effectiveness in separating lithium and magnesium from salt lakes, attributed to their positively charged surface. However, undesired permeability resulting from densely cross-linked structures limits the further industrial applications and development of PEI NF membranes. Herein, a high permeable Mg2+/Li+ separation NF membrane with stronger internal and surface positive charge was fabricated using 1-Aminopyridinium iodide (1-AI) for the first time through a capping-grafting synergistic strategy. On the one hand, the monoamine character of 1-AI can realize the end-capping (EC) effect on the acyl chloride monomers in the interfacial polymerization process, which can contribute to a reduction in the cross-linking degree of the membrane. On the other hand, 1-AI with a quaternary ammonium group as the surface grafting (SG) agent can significantly improve the surface positive charge property of the membrane. The synergistic effect of capping-grafting not only rendered the membrane looser and effectively enhanced the surface positive charge of the membrane, but also increased the depth of grafting modification, leading to a notable rise in the internal positive charge of the membrane. After the capping-grafting treatment, the water permeance of the PEI-EC/SG membrane reached 19.8 L·m−2·h−1·bar−1, approximately 4.5 times that of the original PEI membrane, while keeping an ideal MgCl2 rejection rate (97.1%) and exhibiting good Mg2+/Li+ selectivity (27.7). This work demonstrates the advantages of the capping-grafting synergistic method in regulating membrane structure for improving permeability as well as the surface and internal charge properties of the membrane for enhancing ion selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.