Abstract

The common spatial patterns (CSP) technique is an effective strategy for the classification of multichannel electroencephalogram (EEG) signals. However, the objective function expression of the conventional CSP algorithm is based on the L2-norm, which makes the performance of the method easily affected by outliers and noise. In this paper, we consider a new extension to CSP, which is termed capped L21-norm-based common spatial patterns (CCSP-L21), by using the capped L21-norm rather than the L2-norm for robust modeling. L21-norm considers the L1-norm sum which largely alleviates the influence of outliers and noise for the sake of robustness. The capped norm is further used to mitigate the effects of extreme outliers whose signal amplitude is much higher than that of the normal signal. Moreover, a non-greedy iterative procedure is derived to solve the proposed objective function. The experimental results show that the proposed method achieves the highest average recognition rates on the three real data sets of BCI competitions, which are 91.67%, 85.07%, and 82.04%, respectively. Capped L21-norm-based common spatial patterns-a robust model for EEG signals classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call