Abstract
Alveolar recruitment manoeuvres may mitigate ventilation and perfusion mismatch after cardiac surgery. Monitoring the efficacy of recruitment manoeuvres should provide concurrent information on pulmonary and cardiac changes. This study in postoperative cardiac patients applied capnodynamic monitoring of changes in end-expiratory lung volume and effective pulmonary blood flow. Alveolar recruitment was performed by incremental increases in positive end-expiratory pressure (PEEP) to a maximum of 15 cmH2O from a baseline of 5 cmH2O over 30min. The change in systemic oxygen delivery index after the recruitment manoeuvre was used to identify responders (> 10% increase) with all other changes (≤ 10%) denoting non-responders. Mixed factor ANOVA using Bonferroni correction for multiple comparisons was used to denote significant changes (p < 0.05) reported as mean differences and 95% CI. Changes in end-expiratory lung volume and effective pulmonary blood flow were correlated using Pearson's regression. Twenty-seven (42%) of 64 patients were responders increasing oxygen delivery index by 172 (95% CI 61-2984) mL min-1m-2 (p < 0.001). End-expiratory lung volume increased by 549 (95% CI 220-1116) mL (p = 0.042) in responders associated with an increase in effective pulmonary blood flow of 1140 (95% CI 435-2146) mL min-1 (p = 0.012) compared to non-responders. A positive correlation (r = 0.79, 95% CI 0.5-0.90, p < 0.001) between increased end-expiratory lung volume and effective pulmonary blood flow was only observed in responders. Changes in oxygen delivery index after lung recruitment were correlated to changes in end-expiratory lung volume (r = 0.39, 95% CI 0.16-0.59, p = 0.002) and effective pulmonary blood flow (r = 0.60, 95% CI 0.41-0.74, p < 0.001). Capnodynamic monitoring of end-expiratory lung volume and effective pulmonary blood flow early in postoperative cardiac patients identified a characteristic parallel increase in both lung volume and perfusion after the recruitment manoeuvre in patients with a significant increase in oxygen delivery.Trial registration This study was registered on ClinicalTrials.gov (NCT05082168, 18th of October 2021).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.