Abstract
We introduce a family of Capital allocation rules (C.A.R) based on the dual representation for risk measures and inspired to the Aumann-Shapley allocation principle. These rules extend the one of Denault and Kalkbrener (for coherent risk measures) and the one of Tsanakas (convex case), to the case of non Gateaux differentiable risk measures. We also study their properties and discuss their suitability in the quasiconvex context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.