Abstract

Several data has reported that capilliposide, extracted from a traditional Chinese medicine, Lysimachia capillipes Hemsl. (LC) could exhibit inhibitory effect on cell proliferation in various cancers. The current study investigated the antitumor efficacy of Capilliposide and elucidated its potential molecular mechanism involved in vivo and vitro. Our results indicated that LC capilliposide inhibited proliferation of lung cancer cells in a dose-dependent manner. LC capilliposide induced cell cycle arrest at the S stage and enhanced apoptosis in NSCLC cells. Treatment with LC capilliposide increased the intracellular level of ROS, which activated the mitochondrial apoptotic pathway. Blockage of ROS by NAC highly reversed the effect of LC capilliposide on apoptosis. Xenograft tumor growth was significantly lower in the LC-treated group compared with the untreated control group (P < 0.05). The results also show that LC treatment does not produce any overt signs of acute toxicity in vivo. These findings demonstrate that LC capilliposide could exert an anti-tumor effect on NSCLC through mitochondrial-mediated apoptotic pathway and the activation of ROS is involved.

Highlights

  • Lung cancer has been the most common malignant tumor worldwide and the leading cause of human cancer-related deaths for several decades [1]

  • In order to investigate the effect of Lysimachia capillipes Hemsl. (LC) capilliposide on cell viability of Nonsmall cell lung cancer (NSCLC) cell lines, MTT assay was assayed using A549, H1299, and H460 cell lines

  • H460 cell lines seemed to be more sensitive to LC capilliposide

Read more

Summary

Introduction

Lung cancer has been the most common malignant tumor worldwide and the leading cause of human cancer-related deaths for several decades [1]. Nonsmall cell lung cancer (NSCLC) accounts for nearly 80% of lung cancer cases and approximately two thirds of these patients are diagnosed at an advanced stage. The prognosis is improved by early diagnosis and treatment, tumor recurrence and progression still plague some patients [2]. Developing novel drugs and therapies with fewer side effects is of significance for prognosis of patients with NSCLC [3]. ROS are thought to play multiple roles in tumorigenesis, progression, and maintenance [5]. Cancerous cells have shown a higher level of ROS compared with their noncancerous counterparts. Up-regulation of ROS is usually accompanied with oncogene activation which may contribute to cancer progression.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.