Abstract

Starting from a phase-field description of the isothermal solidification of a dilute binary alloy, we establish a model where capillary waves of the solidification front interact with the diffusive concentration field of the solute. The model does not rely on the sharp-interface assumption and includes nonequilibrium effects, relevant in the rapid-growth regime. In many applications it can be evaluated analytically, culminating in the appearance of an instability that, interfering with the Mullins-Sekerka instability, is similar to that found by Cahn in grain-boundary motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.