Abstract

We developed capillary zone electrophoresis (CZE) with indirect UV detection for the determination of fluoride (F-) in seawater using transient isotachophoresis (tITP) as an on-line concentration procedure. A method of correcting sample salinity effects was also proposed so that F- concentrations were obtained using a calibration graph. The proposed method is simple: it requires no sample pretreatment aside from dilution. The following optimum conditions were established: background electrolyte (BGE), 5mM 2,6-pyridinedicarboxylic acid (PDC) adjusted to pH 3.5 containing 0.03% m/v hydroxypropyl methylcellulose (HPMC); detection wavelength, 200nm; vacuum (50kPa) injection period of sample, 5s (254nL); and applied voltage, 23kV with the sample inlet side as the cathode. The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) for F- reached 0.024 and 0.070mg/L, respectively. The respective values of the relative standard deviation (RSD) of the peak area, peak height, and migration time for F- were 2.5, 3.4, and 0.30%. The proposed method was applied for the determination of F- in seawater samples collected from coastal waters of western Japan during August 26-28, 2014. Both results obtained using standard addition method and a calibration graph agreed with those obtained using a conventional spectrophotometric method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call