Abstract
In this study a capillary underwater discharge, that is sustained with AC (50 Hz) voltages up to 7.5 kV, is investigated. In a capillary discharge scheme, the current is, at some point along its path between two submerged electrodes, flowing through a narrow elongated bore in a dielectric material. When the current density is sufficiently high, local boiling and subsequent vapour breakdown results in the formation of a plasma within this capillary. At the same time the capillary emits an intense jet of vapour bubbles. Time-dependent electrical current, voltage and light emission curves are recorded for discharges in solutions of NaCl in distilled water and reveal different discharge regimes, depending on the conductivity and the excitation voltage, ranging from repetitive microsecond discharge pulses to a quasi-continuous discharge with a glow-like voltage-current characteristic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.