Abstract

The capillary turbulence on the surface of liquid helium with excitation of surface waves by a harmonic force at low frequency ωp is investigated. It is shown for the first time that at the transition of helium out of the superfluid into the normal state the high-frequency edge ωb of the inertial interval shifts in the direction of low frequencies. The magnitude of the shift is described well on the basis of the theory of weak wave turbulence. In the superfluid state the relative width ωb∕ωp of the inertial interval, where a developed turbulent cascade is established, can reach two decades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.