Abstract

Results are presented of a study concerning capillary transport of water in concretes and mortars as a function of water/cement ratio, sand size distribution, and curing. Our studies indicate that the capillary sorption (1) of water in concrete exhibits a complex time dependence. At early times, of the order of one hour, the total water uptake increased with the t 1 2 behavior of typical capillary sorption theories. At longer times, of the order of tens of days, a slow crossover regime is seen as the rate of capillary suction decreases. At very long times, of order hundreds of days, a slower uptake which may be driven by the capillary forces in the smaller gel pores is found. Again the t 1 2 behavior is recovered but with a much smaller sorptivity coefficient. We describe an empirical fitting form for data which describes capillary suction at both short and long times. Aspects of the experimental design including sample drying and exposure to air are discussed. The utility of service life predictions from such measurements is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.