Abstract
Abstract In this paper, we investigate the connection between the index and the geometry and topology of capillary surfaces. We prove an index estimate for compact capillary surfaces immersed in general 3-manifolds with boundary. We also study noncompact capillary surfaces with finite index and show that, under suitable curvature assumptions, such surface is conformally equivalent to a compact Riemann surface with boundary, punctured at finitely many points. We then prove that a weakly stable capillary surface immersed in a half-space of R 3 \mathbb{R}^{3} which is minimal or has a contact angle less than or equal to π / 2 \pi/2 must be a half-plane. Using this uniqueness result, we obtain curvature estimates for strongly stable capillary surfaces immersed in a 3-manifold with bounded geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.