Abstract

Capillary supply of skeletal muscle decreases during denervation. To gain insight into the regulation of this process, we investigated capillary supply and gene expression of angiogenesis-related factors in mouse gastrocnemius muscle following denervation for 4 months. Frozen transverse sections were stained for alkaline phosphatase to detect endogenous enzyme in the capillary endothelium. The mRNA for angiogenesis-related factors, including hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1), fms-like tyrosine kinase (Flt-1), angiopoietin-1 and tyrosine kinase with Ig and epidermal growth factor(EGF) homology domain 2 (Tie-2), was analysed using a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The fibre cross-sectional area after denervation was about 20% of the control value, and the capillary to fibre ratio was significantly lower in denervated than in control muscles. The number of capillaries around each fibre also decreased to about 40% of the control value. These observations suggest that muscle capillarity decreases in response to chronic denervation. RT-PCR analysis showed that the expression of VEGF mRNA was lower in denervated than in control muscles, while the expression of HIF-1alpha mRNA remained unchanged. The expression levels of the KDR/Flk-1 and Flt-1 genes were decreased in the denervated muscle. The expression levels of angiopoietin-1 but not Tie-2 genes were decreased in the denervated muscle. These findings indicate that reduction in the expression of mRNAs in the VEGF/KDR/Flk-1 and Flt-1 as well as angiopoietin-1/Tie-2 signal pathways might be one of the reasons for the capillary regression during chronic denervation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.