Abstract

Planar-flow melt spinning (PFMS) is a single-stage rapid manufacturing/solidification technique for producing thin metal sheets or ribbons. Molten metal is forced through a nozzle onto the substrate where it freezes and is spun as ribbon product. A puddle of molten metal held by surface tension (capillarity) forms between the nozzle and substrate. An important measure of product quality is the uniformity of thickness along and across the ribbon. At small length scales, local thickness changes or surface defects are present that are undesirable. This work examines the cross wave, a well-defined periodic surface defect, seen when casting aluminum-silicon alloys. The presence of the defect is related to processing conditions and puddle dynamics. Motions of the puddle menisci are captured using high-speed video and analyzed for frequency content. A high frequency vibration of both menisci corresponds to the observed frequency of the surface defect. A scaling analysis reveals these motions to be capillary in nature and comparisons are made with two model problems of vibrating capillary liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call