Abstract
Coupling red blood cell (RBC) supply to O2 demand is an intricate process requiring O2 sensing, generation of a stimulus, and signal transduction that alters upstream arteriolar tone. Although actively debated, this process has been theorized to be induced by hypoxia and to involve activation of endothelial inwardly rectifying K+ channels (KIR) 2.1 by elevated extracellular K+ to trigger conducted hyperpolarization via connexin40 (Cx40) gap junctions to upstream resistors. This concept was tested in resting healthy skeletal muscle of Cx40-/- and endothelial KIR2.1-/- mice using state-of-the-art live animal imaging where the local tissue O2 environment was manipulated using a custom gas chamber. Second-by-second capillary RBC flow responses were recorded as O2 was altered. A stepwise drop in PO2 at the muscle surface increased RBC supply in capillaries of control animals while elevated O2 elicited the opposite response; capillaries were confirmed to express Cx40. The RBC flow responses were rapid and tightly coupled to O2; computer simulations did not support hypoxia as a driving factor. In contrast, RBC flow responses were significantly diminished in Cx40-/- mice. Endothelial KIR2.1-/- mice, on the other hand, reacted normally to O2 changes, even when the O2 challenge was targeted to a smaller area of tissue with fewer capillaries. Conclusively, microvascular O2 responses depend on coordinated electrical signaling via Cx40 gap junctions, and endothelial KIR2.1 channels do not initiate the event. These findings reconceptualize the paradigm of blood flow regulation in skeletal muscle and how O2 triggers this process in capillaries independent of extracellular K+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.