Abstract

Capillary origami uses surface tension to fold and shape solid films and membranes into three-dimensional structures. It uses the fact that solid surfaces, no matter how hydrophobic, will tend to adhere to and wrap around the surface of a liquid. In this work, we report that a superhydrophobic coating can be created, which can completely suppress wrapping as a contacting water droplet evaporates. We also show that using a wetting azeotropic solution of allyl alcohol, which penetrates the surface features, can enhance liquid adhesion and create more powerful Capillary Origami. These findings create the possibility of selectively shaping membrane substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.