Abstract

We recently established a technique to expand male germ line stem (GS) cells in long-term culture without losing their spermatogenic capacity. To gain insight into the genetic program of these cells, we compared the mRNA expression profile of GS cells with that of embryonic stem (ES) cells using DNA microarrays. We found 79 genes that were upregulated in GS cells compared to ES cells, including synaptonemal complex protein-1, deleted in azoospermia-like, ubiquitin-conjugating enzyme E2B, and ubiquitin carboxy-terminal hydrolase L1, all of which are functionally important for spermatogenesis. In addition, we identified a cDNA encoding the mouse ortholog of capillary morphogenesis gene (CMG)-1. CMG-1 transcripts were predominantly produced in spermatogonia and spermatocytes in mouse testis. When CMG-1 expression was attenuated in a mouse spermatocyte-derived cell line, GC-2spd(ts), by a target-specific short interfering RNA, the morphology of the cells was changed and the expression of cyclin D2 was abrogated. A reporter assay using a genomic region upstream of the mouse cyclin D2 gene revealed that this downmodulation occurs at the transcriptional level. We detected FLAG-tagged CMG-1 protein in the nuclei of transfected COS7 cells, suggesting that CMG-1 may play a unique role in the transcriptional regulation of the cyclin D2 gene. The upregulated GS genes identified in this study will provide useful information for the future investigation of spermatogonial stem cells and the early phase of male germ cell differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.