Abstract

Wrinkles in bilayer systems comprising a thin stiff film attached to a soft substrate can globally transition into folds under sufficiently large compression. This phenomenon has been extensively studied primarily using uniaxially compressed systems. However, inducing the wrinkle-to-fold transition at designated locations on a wrinkled surface under small biaxial compression remains a challenge. In this study, we describe a method for causing randomly oriented wrinkles to locally evolve into folds using water droplets. When a droplet comes into contact with the random wrinkles that have spontaneously formed upon film deposition owing to residual biaxial compressive strains, radially extended folds instantaneously emerge at the droplet boundary. Upon water evaporation, the wrinkles beneath the droplet also undergo a transition, leaving a fold network. By contrast, the surface regions distant from where the droplet was placed retain the wrinkle morphology. The folded areas can be controlled by adjusting the volume and number of droplets. These transitions are enabled by the capillary forces of water that help to increase the local compressive strains. This capillary-induced wrinkle-to-fold transition provides a simple mechanism to develop folds in selected locations on wrinkled surfaces of film-substrate systems subject to small biaxial compression, which is unachievable with conventional approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.