Abstract

Germanium (Ge) is a prospective anode material for lithium-ion batteries, as it possesses large theoretical capacity, outstanding lithium-ion diffusivity, and excellent electrical conductivity. Ge suffers from drastic capacity decay and poor rate performance, however, owing to its low electrical conductivity and huge volume expansion during cycling processes. Herein, a novel strategy has been developed to synthesize a Ge@N-doped carbon nanotubes (Ge@N-CNTs) composite with Ge nanoparticles uniformly distributed in the N-CNTs by using capillary action. This unique structure could effectively buffer large volume expansion. When evaluated as an anode material, the Ge@N-CNTs demonstrate enhanced cycling stability and excellent rate capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.