Abstract

We present the results of molecular dynamics simulations for the capillary imbibition of a drop of an ionic PbI2 melt into inorganic BN, MoS2, and carbon nanotubes. Radial atomic distribution functions are used to characterize the structure of the liquid inside of nanotubes and the kinetics of the penetration. We find that in all cases the PbI2 melt remains liquid but a shell-like structure of the melt along the nanotube axis becomes visible. The filling of MoS2 nanotubes obeys the Lucas−Washburn equation within each shell, whereas the filling of carbon and BN nanotubes follows a modified expression. Both the chemical nature and roughness of the nanotube walls play an important role in the capillary kinetics and the habitus of the embedded liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.