Abstract

Peroxyacyl nitrates (PANs) and nitrogen dioxide are important atmospheric air pollutants in the troposphere. These atmospheric nitrogen species are strongly coupled chemically by a clearly temperature-dependent equilibrium in the troposphere. A chemical method that can measure both nitrogen dioxide and PANs rapidly and with sub-part-per-billion detection is described that is based upon a modified luminoldetection system coupled to a capillary gas chromatographic column by using helium as a carrier. The system can readily separate and detect nitrogen dioxide, peroxyacetyl nitrate, peroxyproprionyl nitrate, and peroxybutyrl nitrate with detection limits in the low tens of parts per trillion with total analysis time of less than 1 min. Calibration of PAN by thermal decomposition to nitrogen dioxide is demonstrated with PAN detection sensitivities approximately 75% of the sensitivities observed for NO 2 luminol detection by using helium as a carrier gas. The advantages of this method for simultaneous measurement of nitrogen dioxide and PANs over ozone chemiluminescent detection and electron capture detection are discussed, as well as potential applications of this method for heterogeneous surface chemistry studies of PANs and nitrogen dioxide and for tropospheric measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.