Abstract

Over the last few years, the SARS-CoV-2 pandemic has made the need for rapid, affordable diagnostics more compelling than ever. While traditional laboratory diagnostics like PCR and well-plate ELISA are sensitive and specific, they can be costly and take hours to complete. Diagnostic tests that can be used at the point-of-care or at home, like lateral flow assays (LFAs) are a simple, rapid alternative, but many commercially available LFAs have been criticized for their lack of sensitivity compared to laboratory methods like well-plate ELISAs. The Capillary-Driven Immunoassay (CaDI) device described in this work uses microfluidic channels and capillary action to passively automate the steps of a traditional well-plate ELISA for visual read out. This work builds on prior capillary-flow devices by further simplifying operation and use of colorimetric detection. Upon adding sample, an enzyme-conjugated secondary antibody, wash steps, and substrate are sequentially delivered to test and control lines on a nitrocellulose strip generating a colorimetric response. The end user can visually detect SARS-CoV-2 antigen in 15–20 min by naked eye, or results can be quantified using a smartphone and software such as ImageJ. An analytical detection limit of 83 PFU/mL for SARS-CoV-2 was determined for virus in buffer, and 222 PFU/mL for virus spiked into nasal swabs using image analysis, similar to the LODs determined by traditional well-plate ELISA. Additionally, a visual detection limit of 100 PFU/mL was determined in contrived nasal swab samples by polling 20 untrained end-users. While the CaDI device was used for detecting clinically relevant levels of SARS-CoV-2 in this study, the CaDI device can be easily adapted to other immunoassay applications by changing the reagents and antibodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call