Abstract

We portray a universal description of dynamic slip-stick behavior of water flowing through nanoscale pores. Based on fundamental molecular transport considerations, we derive a generalized constitutive model for describing resistive forces acting on the water column in a capillary that is being dynamically filled, as a combined function of the meniscus height, surface wettability, and roughness. This effectively acts like a unique signature of nanopore imbibition characteristics of water, which, when substituted in a simple one-dimensional force balance model agrees quantitatively with results from molecular dynamics simulations for a general class of problems, without necessitating the employment of any artificially tunable fitting parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.