Abstract

ABSTRACTIt has been predicted that 30 to 80% of archaeal genomes remain annotated as hypothetical proteins with no assigned gene function. Further, many archaeal organisms are difficult to grow or are unculturable. To overcome these technical and experimental hurdles, we developed a high-throughput functional genomics screen that utilizes capillary electrophoresis (CE) to identify nucleic acid modifying enzymes based on activity rather than sequence homology. Here, we describe a functional genomics screening workflow to find DNA modifying enzyme activities encoded by the hyperthermophile Thermococcus kodakarensis (T. kodakarensis). Large DNA insert fosmid libraries representing an ∼5-fold average coverage of the T. kodakarensis genome were prepared in Escherichia coli. RNA-seq showed a high fraction (84%) of T. kodakarensis genes were transcribed in E. coli despite differences in promoter structure and translational machinery. Our high-throughput screening workflow used fluorescently labeled DNA substrates directly in heat-treated lysates of fosmid clones with capillary electrophoresis detection of reaction products. Using this method, we identified both a new DNA endonuclease activity for a previously described RNA endonuclease (Nob1) and a novel AP lyase DNA repair enzyme family (termed 'TK0353') that is found only in a small subset of Thermococcales. The screening methodology described provides a fast and efficient way to explore the T. kodakarensis genome for a variety of nucleic acid modifying activities and may have implications for similar exploration of enzymes and pathways that underlie core cellular processes in other Archaea.IMPORTANCE This study provides a rapid, simple, high-throughput method to discover novel archaeal nucleic acid modifying enzymes by utilizing a fosmid genomic library, next-generation sequencing, and capillary electrophoresis. The method described here provides the details necessary to create 384-well fosmid library plates from Thermococcus kodakarensis genomic DNA, sequence 384-well fosmids plates using Illumina next-generation sequencing, and perform high-throughput functional read-out assays using capillary electrophoresis to identify a variety of nucleic acid modifying activities, including DNA cleavage and ligation. We used this approach to identify a new DNA endonuclease activity for a previously described RNA endonuclease (Nob1) and identify a novel AP lyase enzyme (TK0353) that lacks sequence homology to known nucleic acid modifying enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.