Abstract

Multifunctional poly(amidoamine) (PAMAM) dendrimer-based nanodevices provide novel nanoplatforms for targeting, imaging, and treatment of cancers in vitro and in vivo. Generational, skeletal, and substitutional dispersities are always present in dendrimer-based medical nanodevices. Molecular distribution plays a central role for one to evaluate the quality of PAMAM materials for medical applications. Capillary electrophoresis (CE) has been extensively used as a characterization technique to analyze a range of PAMAM dendrimers, from simple PAMAM derivatives to complex multifunctional PAMAM nanodevices. This review reports the recent advances in the analysis and characterization of a variety of PAMAM dendrimer-based nanoparticles ranging from polycationic and polyanionic PAMAM derivatives to PAMAMs of different generations and defined substitutions, and to complex multifunctional PAMAM nanodevices containing targeting ligands, dyes, and drugs. Understanding the structural complexity of dendrimer nanodevices is crucial for their use as multifunctional imaging, targeting, and cancer therapeutic devices, as well as for their use in biosensing, diagnostics, and control of biological systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call