Abstract

A capillary electrophoresis (CE)/indirect chemiluminescence (CL) detection method is described for monoamines, viz., serotonin (5-HT), dopamine (DA), epinephrine (EP), and norepinephrine (NE) and for catechol (CA). Optimal separation and detection were obtained with an electrophoretic buffer of 10 mM sodium borate (pH 9.5) containing 5 mM luminol and 25 mM H2O2, and a catalyst solution of 30 microM CuSO4 in 30 mM borate buffer (pH 10.0). Complete separation of 5-HT, DA, EP, NE and CA was achieved in less than 5 min. The Cu(II)-catalyzed luminol CL reaction was employed to provide the high and constant background. Since monoamines and catechol can form stable complexes with Cu(II), inverted analyte peaks due to decreased catalytic activity of Cu(II) can be detected. The degree of CL suppression is proportional to the analyte concentrations. Linearity (r> or =20.99) over two orders of magnitude was generally obtained. The concentration limits of detection (CLODs) for the monoamines and catechol studied were between 0.5 and 3.1 uM. The relative standard deviation (RSD) values on peak size and migration time were in the ranges 3.2-4.4% and 0.4-0.5%, respectively. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call