Abstract

The electrophoretic separation of DNA molecules is usually performed in thin slabs of agarose or polyacrylamide gel. However, DNA separations can be achieved more rapidly and efficiently within a microbore fused silica capillary filled with an uncrosslinked polymer solution. An early assumption was that the mechanism of DNA separation in polymer solution-capillary electrophoresis (PS-CE) is the same as that postulated to occur in slab gel electrophoresis, i.e., that entangled polymer chains form a network of "pores" through which the DNA migrates. However, we have demonstrated that large DNA restriction fragments (2.0-23.1 kbp) can be separated by CE in extremely dilute polymer solutions, which contain as little as 6 parts per million [0.0006% (w/w)] of uncrosslinked hydroxyethyl cellulose (HEC) polymers. In such extremely dilute HEC solutions, far below the measured polymer entanglement threshold concentration, pore-based models of DNA electrophoresis do not apply. We propose a transient entanglement coupling mechanism for the electrophoretic separation of DNA in uncrosslinked polymer solutions, which is based on physical polymer/DNA interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call