Abstract

Capillary electrophoresis integrated immobilized enzyme reactors are becoming an increasingly popular alternative for enzyme kinetic and inhibition assays thanks to their unique set of features including cost effectiveness, repeated use of the enzyme, minuscule sample consumption, rapid analysis time and easy automation. In this work we present the development and application of a capillary electrophoresis integrated immobilized enzyme reactor based on magnetic particles for kinetic and inhibition studies of β-secretase, a key enzyme in the development of Alzheimer's disease and a promising drug target. We document the optimization of the immobilization procedure, characterization of immobilized β-secretase, optimization of a mutually compatible incubation protocol and separation method as well as the production of the capillary electrophoresis integrated immobilized enzyme reactor. The applicability of the capillary electrophoresis integrated immobilized enzyme reactor was demonstrated by kinetic assay with an unlabelled substrate and by inhibition assays using three structurally different reference inhibitors. The resulting kinetic and inhibition parameters clearly support the applicability of the herein presented method as well as document the fundamental phenomena which need to be taken in account when comparing the results to other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.