Abstract

Using an aqueous background electrolyte containing 25 m M ammonium acetate and NH 3 (pH 9), CE–tandem MS and CE–triple MS with atmospheric pressure electrospray ionization in the positive ion mode are shown to represent attractive approaches for analysis and confirmation testing of morphine (MOR) and related opioids in human urine. Injection of plain or diluted urine permits monitoring of solutes at concentrations above 2–5 μg/ml. For the recognition of lower concentrations, solute extraction and concentration is required. Liquid–liquid extraction at alkaline pH is shown to be suitable for analysis of free opioids only whereas solid-phase extraction using a mixed-mode polymer phase is demonstrated to permit analysis of both free and glucuronidated opioids. The former sample preparation approach, however, requires about half of the time only. Commencing with 2 ml of urine, reconstitution to provide a sample volume of 0.2 ml and hydrodynamic sample injection, detection limits for free opioids are shown to be on the 100–200 ng/ml drug level. Much improved (ppb) sensitivity is obtained by infusing the extract directly into the source of the MS system. However, solutes that produce equal fragments (such as the two glucuronides of MOR) can thereby not be distinguished. CE–tandem MS and CE–triple MS are demonstrated to be suitable to confirm the presence of MOR, MOR-3-glucuronide, 6-monoacetylmorphine, codeine, codeine-6-glucuronide, dihydrocodeine, methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine in a toxicological quality control urine. The same is shown for selected metabolites of codeine and dihydrocodeine in urines collected after administration of pharmaceutical preparations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call