Abstract

Environmental contextAnalysis of soil organic matter is important for understanding turnover and stabilisation processes of organic carbon in soils. Capillary electrophoresis is used here to investigate humic acids from soils of diverse forest sites, and show that the patterns of signals are indicative of soil characteristics. The method provides useful information of soil types and complements the existing set of methods for humic acid characterisation. AbstractAnalyses of humic substances provide very useful information about turnover characteristics and stabilisation processes of soil organic matter in environmental soil samples. The present study investigates 113 samples of forest soils from three different layers (undecomposed litter (L), if present, mixed samples of F (intermediate decomposed) and H (highly decomposed) organic matter (FH) and upper mineral soil layers (Ah horizon) from 0 to 5 cm) by extracting humic acids (HAs) and recording electropherograms. Five signals of these electropherograms were evaluated and correlated with basic parameters from soil (organic carbon, Corg, and total nitrogen, Nt, and extraction yields of HAs) and HAs (total carbon, Ct, and Nt), and with signals from photometry, mid-infrared and fluorescence spectroscopy. The developed method was able to separate HAs from different soil layers by calculating a discriminant function based on the five evaluated electrophoretic signals. The dataset of this work opened the opportunity to correlate the observed electrophoretic signals with the other determined soil parameters and spectroscopic signals. This can be seen as a very important step in the direction to assignments of the obtained electrophoretic signals. Soil characteristics were reflected quite well by this method and, combined with the other approaches, it is suitable for applications in further studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.