Abstract

With the implementation of recombinant DNA technology in the pharmaceutical industry, some synthetic insulins have been developed in order to improve the therapy of diabetes. These analogues differ only slightly in the amino acid sequence, therefore displaying a great challenge for analytical chemistry. Within the work presented in this paper, capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC) with sodium dodecylsulphate (SDS) as micelle-forming agent, and microemulsion electrokinetic chromatography (MEEKC) with microemulsions consisting of SDS, n-octane and 1-butanol were investigated for the separation of human insulin and five synthetic analogues. Best results were achieved with a solvent-modified MEKC system consisting of 100 mM sodium dodecyl sulphate and 15% acetonitrile in 10 mM borate buffer (pH 9.2). A similar system based on perfluorooctanoic acid as micelle-forming agent in ammonium acetate (pH 9.2) was successfully employed for the hyphenation with a quadrupole/time-of-flight mass spectrometer via a sheath-flow interface. In this case, detection limits at 10 mg/L could be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.