Abstract

The CEC-MS of alkyltrimethylammonium (ATMA+) ions with chain lengths ranging from C1-C18 is optimized using an internally tapered column packed with mixed mode reversed phase/strong cation exchange stationary phase. A systematic study of the CEC separation parameters is conducted followed by evaluation of the ESI-MS sheath liquid and spray chamber settings. First, the optimization of CEC separation parameters are performed including the ACN concentration, triethylamine (TEA) content, buffer pH and ammonium acetate concentration. Using 90% v/v ACN with 0.04% v/v TEA as mobile phase, the separation of longer chain C6-C18-TMA+ surfactants could be achieved in 15 min. Lowering the ACN concentration to 70% v/v provided resolution of shorter chain C1, C2-TMA+ from C6-TMA+ although the total analysis time increased to 40 min. Furthermore, variation of both the ACN and TEA content as well as ionic strength has found to significantly influence the retention of longer chain surfactants as compared to shorter chains. The optimum CEC conditions are 70% v/v ACN, 0.04% v/v TEA, pH 3.0 and 15 mM ammonium acetate. Next, the optimization of the ESI-MS sheath liquid composition is conducted comparing methanol to isopropanol followed by the use of experimental design for analysis of spray chamber parameters. Overall, the developed CEC-ESI-MS method allows quantitative and sensitive monitoring of ATMA+ from < or =10 microg/mL down to 10 ng/mL. Utilizing the optimized CEC-ESI-MS protocol, the challenging analysis of commercial sample Arquad S-50 ATMA+ containing cis-trans unsaturated and saturated soyabean fatty acid derivatives is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.