Abstract

It is essential to develop portable, versatile, and reliable diagnostic devices in point-of-care testing (POCT). The detection of biomarkers requires selective separation and large specific surface for high sensitivity and accuracy at trace levels in whole blood samples using POCT devices. Herein, a kind of 3D electrochemical biosensors were designed via in-situ synthesizing polyaniline (PANI) and platinum nanoparticles (Pt NPs) on polysulfone hollow fiber membrane (HFM) scaffolds with gradient porous structure. The gradient porous HFMs scaffolds provide uniform capillary flow, self-driven blood separation and sufficient enzyme immobilization sites. Simultaneously, the in-situ deposited materials fulfill interconnected conductive networks, thus ensuring accurate and rapid detection of the sensors without hindering capillary progress. These sensors display ultralow sampling (~3 μL), fast fluid flow (>1 μL/ms), wide linear range (glucose: 0–24 mM, R2=0.992; cholesterol: 0–9 mM, R2=0.999), high sensitivity and accuracy especially under different hematocrits in POCT applications towards glucose and cholesterol. The innovative integration of POCT biosensors with interconnected conductive nanoparticles, selective blood separation and gradient porous structures can find wide application in resource-limited regions, large population screening, and public health emergencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.