Abstract

We investigate adsorption of a Lennard–Jones fluid in slit-like pores with energetically heterogeneous walls by using Grand Canonical Monte Carlo simulations and a density functional approach. The model of a fluid-wall potential is qualitatively similar to that invoked by Röcken et al. (J. Chem. Phys.108, 8089, (1999); i.e., it consists of a homogeneous part that varies in the direction perpendicular to the wall and a periodic part, varying also in one direction parallel to the wall, but in contrast to the above mentioned work, both parts of the fluid-wall potential are modeled by Lennard–Jones (9, 3) type functions. The structure of the adsorbed film is characterized by local densities. We evaluate the phase diagrams for several systems characterized by different corrugation of the adsorbing potential and discuss the discrepancies between theoretical predictions and computer simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.