Abstract

We study the condensation of fluids confined by a pair of nonparallel plates of finite height H. We show that such a system experiences two types of condensation, termed single and double pinning, which can be characterized by one (single-pinning) or two (double-pinning) edge contact angles describing the shape of menisci pinned at the system edges. For both types of capillary condensation, we formulate the Kelvin-like equationand determine the conditions under which the given type of condensation occurs. We construct the global phase diagram revealing a reentrant phenomenon pertinent to the change of the capillary condensation type upon varying the inclination of the walls. Asymptotic properties of the system are discussed and a link with related phase phenomena in different systems is made. Finally, we show that the change from a single- to a double-pinned state is a continuous transition, the character of which depends on the wetting properties of the walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call