Abstract
Accumulating data on traditional compacted soil-surface covers are demonstrating that they are likely to degrade and have reduced effectiveness as long-term barriers; therefore, suitable alternatives are being examined. One possible alternative that is receiving increased attention is capillary barriers. The U.S. Environmental Protection Agency (USEPA) allows for alternatives to be used, but requires that they achieve infiltration and erosion protection equivalent to that of designs contained in design guidance documents. A method of comparing a capillary barrier to a design that features a compacted soil layer that meets the minimum requirements for a solid-waste landfill cover (so-called Subtitle D) under identical, transient conditions is introduced in the present paper, allowing equivalency to be demonstrated. The approach uses daily climatic data rather than monthly or yearly averages, which can provide misleading results. The concept of adding a “transport layer” at the fine/coarse interface of the capillary barrier to laterally drain water and reduce the moisture content is also presented. Numerical modeling results for a variety of climates show that the capillary barriers may be equivalent (or better) compared to a Subtitle D cover at many locations. The inclusion of a transport layer may significantly improve capillary barrier performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.