Abstract
We investigate the evolution of a system of colloidal particles, trapped at a fluid interface and interacting via capillary attraction, as a function of the range of capillary interactions and temperature. We address the collapse of an initially homogeneous particle distribution and of a radially symmetric (disk-shaped) distribution of finite size, both theoretically by using a perturbative approach inspired by cosmological models and numerically by means of Brownian dynamics (BD) and dynamical density functional theory (DDFT). The results are summarized in a "dynamical phase diagram", describing a smooth crossover from a collective (gravitational-like) collapse to local (spinodal-like) clustering. In this crossover region, the evolution exhibits a peculiar shock wave behavior at the outer rim of the contracting, disk-shaped distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.