Abstract

In a self-oscillating gel, unidirectional chemical waves generated by the Belousov-Zhabotinsky reaction can drive locomotion, which results from the difference between the push and pull forces in the wavefront and waveback, respectively. In a narrow tube, such a gel is subject not only to the asymmetric force engendered by the propagation of the chemical waves but also to additional forces originating from the capillary effect in the polymer skeleton. The ends of a self-oscillating gel in a tube are squeezed unequally during unidirectional motion, causing new waves of higher frequency and ultimately giving rise to reversal of the direction of chemical wave propagation. This peculiar phenomenon of a self-oscillating gel in a narrow glass tube results in a nonmonotonic evolution of the gel locomotion velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.