Abstract
AbstractFlexible electronics with sophisticated 3D architectures enable multidimensional functionalities and multi‐component integration, thus surpassing their 2D counterparts in soft robotics and wearable sensors. Because of its unique metallic and fluidic characteristics, liquid metal (LM) has proven to be an excellent material for fabricating flexible electronics. However, its low viscosity and high surface tension have primarily restricted LM to the creation of 2D‐patterned films on flat surfaces, significantly limiting the complexity and functionality of the resulting flexible devices. In this work, inspired by the capillary‐driven liquid flow in a hierarchical lattice matrix, a 3D patterning method is proposed for LM and extended to the fabrication of porous materials with flexible conductivity. The feasibility and versatility of the proposed method are showcased by fabricating tunable electromagnetic interference shielding materials, programmable 3D circuits, and customizable wearable sensors, highlighting its potential for promoting the development of integrated circuits and wearable electronics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.