Abstract

Ever since we developed mitochondria to generate ATP, eukaryotes required intimate mito-nuclear communication. In addition, since reactive oxygen species are a cost of mitochondrial oxidative phosphorylation, this demands safeguards as protection from these harmful byproducts. Here we identified a critical transcriptional integrator which eukaryotes share to orchestrate both nutrient-induced mitochondrial energy metabolism and stress-induced nuclear responses, thereby maintaining carbon-nitrogen balance, and preserving life span and reproductive capacity. Inhibition of nutrient-induced expression of CAPER arrests nutrient-dependent cell proliferation and ATP generation and induces autophagy-mediated vacuolization. Nutrient signaling to CAPER induces mitochondrial transcription and glucose-dependent mitochondrial respiration via coactivation of nuclear receptor ERR-α-mediated Gabpa transcription. CAPER is also a coactivator for NF-κB that directly regulates c-Myc to coordinate nuclear transcriptome responses to mitochondrial stress. Finally, CAPER is responsible for anaplerotic carbon flux into TCA cycles from glycolysis, amino acids and fatty acids in order to maintain cellular energy metabolism to counter mitochondrial stress. Collectively, our studies reveal CAPER as an evolutionarily conserved ‘master’ regulatory mechanism by which eukaryotic cells control vital homeostasis for both ATP and antioxidants via CAPER-dependent coordinated control of nuclear and mitochondrial transcriptomic programs and their metabolisms. These CAPER dependent bioenergetic programs are highly conserved, as we demonstrated that they are essential to preserving life span and reproductive capacity in human cells—and even in C. elegans.

Highlights

  • An efficient metabolic adaptation to nutrient status is essential to promote growth, reproduction and to safeguard survival and life span

  • Two recent studies elucidated the importance of nutrient-induced mitochondrial functions [1,2] in mammalian longevity, but these studies did not either address how these critical nutrient-induced mitochondrial functions are integrated with nutrient-enhanced antioxidant capacities— nor identify how the carbon and nitrogen balance is maintained

  • Our study reveals CAPER, as thefirst’ example of a coregulator nodal integrator which eukaryotes share to orchestrate both nutrient-induced mitochondrial energy metabolism by coactivating ERRα-Gabpa and stress-induced adaptive metabolic responses via NF- κB/c-Myc; this allows maintenance of carbon-nitrogen balance as well as preservation of life span and reproductive capacity

Read more

Summary

Introduction

An efficient metabolic adaptation to nutrient status is essential to promote growth, reproduction and to safeguard survival and life span. We uncover CAPER as a previously unknown nodal integrator which eukaryotes use to sense quantities of nutrients and to coordinate their bigenomes; CAPER stimulates mitochondrial activities by coactivating ERR-α-Gabpa to induce nuclear genes and activates adaptive responses to the increased mitochondrial oxidative stress signals submitted to nucleus by facilitating NF-κB-c-Myc. Here, we uncover CAPER as a previously unknown nodal integrator which eukaryotes use to sense quantities of nutrients and to coordinate their bigenomes; CAPER stimulates mitochondrial activities by coactivating ERR-α-Gabpa to induce nuclear genes and activates adaptive responses to the increased mitochondrial oxidative stress signals submitted to nucleus by facilitating NF-κB-c-Myc These roles of CAPER in anabolic energy metabolism and redox capacities are highly conserved in C. elegans, in turn preserving life span and reproductive capacity

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.