Abstract

The capelin is a small pelagic fish that performs long distance migrations. It is a key species in the Barents Sea ecosystem and its distribution is highly climate dependent. Here we use an individual based model to investigate consequences of global warming on capelin distribution and population dynamics. The model relies on input on physics and plankton from a biophysical ocean model, and the entire life cycle of capelin including spawning of eggs, larval drift and adult movement is simulated. Spawning day and adult movement strategies are adapted by a genetic algorithm. Spawning has to take place in designated near-shore spawning areas. The output generated by the model is capelin migration/distribution and population dynamics. We present simulations with present day climate and a future climate scenario. For the present climate the model evolves a spatial distribution resembling typical spatial dynamics of capelin with the coasts of Northern Norway and Murman as the main spawning areas. For the climate change simulation, the capelin is predicted to shift spawning eastwards and also utilize new spawning areas along Novaya Zemlya. There is also a shift in the adult distribution towards the north eastern part of the Barents Sea and earlier spawning associated with the warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.