Abstract

With the increasing adoption of electric vehicles (EVs) by the general public, a lot of research is being conducted in Li-ion battery-related topics, where state-of-health (SoH) estimation has a prominent role. Accurate knowledge of this parameter is essential for efficient and safe EV operation. In this work, machine-learning techniques are applied to estimate this parameter in EV applications and in diverse scenarios. After thoroughly analysing cell ageing in different storage conditions, a novel approach based on impedance data is developed for SoH estimation. A fully-connected feed-forward neural network (FC-FNN) is employed to estimate the battery’s maximum available capacity from a small set of impedance measurements. The method was tested for estimation in long-term scenarios and for diverse degradation procedures with data from real EV batteries. High accuracy was obtained in all situations, with a mean absolute error as low as 0.9%. Thus, the proposed algorithm constitutes a powerful and viable solution for fast and accurate SoH estimation in real-world battery management systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.