Abstract

The two-receiver broadcast packet erasure channel with feedback and memory is studied. Memory is modelled using a finite-state Markov chain representing a channel state. The channel state is unknown at the transmitter, but observations of this hidden Markov chain are available at the transmitter through feedback. Matching outer and inner bounds are derived and the capacity region is determined. The capacity region does not have a single-letter characterization and is, in this sense, uncomputable. Approximations of the capacity region are provided and two optimal coding algorithms are outlined. The first algorithm is a probabilistic coding scheme that bases its decisions on the past L feedback sequences. Its achievable rate-region approaches the capacity region exponentially fast in L. The second algorithm is a backpressure-like algorithm that performs optimally in the long run.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.