Abstract
In this letter, optimal power allocation and capacity regions are derived for groupwise successive interference cancellation (GSIC) systems operating in multipath fading channels, under imperfect channel estimation conditions. It is shown that the impact of channel estimation errors on the system capacity is two-fold: It affects the receiver performance within a group of users, as well as the cancellation performance (through cancellation errors). An iterative power allocation algorithm is derived, based on which it can be shown that that the total required received power is minimized when the groups are ordered according to their cancellation errors, and the first detected group has the smallest cancellation error. Performance/complexity tradeoff issues are also discussed by directly comparing the system capacity for different implementations: GSIC with linear minimum-mean-square error (LMMSE) receivers within the detection groups; GSIC with matched filter (MF) receivers; multicode LMMSE systems; and simple all MF receivers systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.