Abstract
Abstract We derive new inequalities between the boundary capacity of an asymptotically flat 3-manifold with nonnegative scalar curvature and boundary quantities that relate to quasi-local mass; one relates to Brown–York mass and the other is new. We argue by recasting the setup to the study of mean-convex fill-ins with nonnegative scalar curvature and, in the process, we consider fill-ins with singular metrics, which may have independent interest. Among other things, our work yields new variational characterizations of Riemannian Schwarzschild manifolds and new comparison results for surfaces in them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.