Abstract

With the blasting increase of wireless data traffic, incumbent wireless service providers (WSPs) face critical challenges in provisioning spectrum resource. Given the permission of unlicensed access to TV white spaces, WSPs can alleviate their burden by exploiting the concept of “capacity offload” to transfer part of their traffic load to unlicensed spectrum. For such use cases, a central problem is for WSPs to coexist with others, since all of them may access the unlicensed spectrum without coordination thus interfering each other. Game theory provides tools for predicting the behavior of WSPs, and we formulate the coexistence problem under the framework of non-cooperative games as a capacity offload game (COG). We show that a COG always possesses at least one pure-strategy Nash equilibrium (NE). The analysis provides a full characterization of the structure of the NEs in two-player COGs. When the game is played many times and each WSP individually updates its strategy based on its best-response function, the resulting process forms a best-response dynamic. We establish that if the network configuration satisfies certain conditions so that the resulting best-response dynamics become linear, both simultaneous-move and alternating-move best-response dynamics are guaranteed to converge to the unique NE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.