Abstract

We study an organization’s one-time capacity investment in a renewable energy-producing technology with supply intermittency and net metering compensation. The renewable technology can be coupled with conventional technologies to form a capacity portfolio that is used to meet stochastic demand for energy. The technologies have different initial investments and operating costs, and the operating costs follow different stochastic processes. We show how to reduce this problem to a single-period decision problem and how to estimate the joint distribution of the stochastic factors using historical data. Importantly, we show that data granularity for renewable yield and electricity demand at a fine level, such as hourly, matters: Without energy storage, coarse data that does not reflect the intermittency of renewable generation may lead to an overinvestment in renewable capacity. We obtain solutions that are simple to compute, intuitive, and provide managers with a framework for evaluating the trade-offs of investing in renewable and conventional technologies. We illustrate our model using two case studies: one for investing in a solar rooftop system for a bank branch and another for investing in a solar thermal system for water heating in a hotel, along with a conventional natural gas heating system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.